ATP Release from Vascular Endothelia Occurs Across Cx43 Hemichannels and Is Attenuated during Hypoxia

نویسندگان

  • Marion Faigle
  • Jessica Seessle
  • Stephanie Zug
  • Karim C. El Kasmi
  • Holger K. Eltzschig
چکیده

BACKGROUND Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions. METHODOLOGY, PRINCIPAL FINDINGS We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia. Surprisingly, we found that ATP release was significantly attenuated following hypoxia exposure (2% oxygen, 22+/-3% after 48 h). In contrast, intracellular ATP was unchanged. Similarly, lactate-dehydrogenase release into the supernatants was similar between normoxic or hypoxic endothelia, suggesting that differences in lytic ATP release between normoxia or hypoxia are minimal. Next, we used pharmacological strategies to study potential mechanisms for endothelial-dependent ATP release (eg, verapamil, dipyridamole, 18-alpha-glycyrrhetinic acid, anandamide, connexin-mimetic peptides). These studies revealed that endothelial ATP release occurs--at least in part--through connexin 43 (Cx43) hemichannels. A real-time RT-PCR screen of endothelial connexin expression showed selective repression of Cx43 transcript and additional studies confirmed time-dependent Cx43 mRNA, total and surface protein repression during hypoxia. In addition, hypoxia resulted in Cx43-serine368 phosphorylation, which is known to switch Cx43 hemi-channels from an open to a closed state. CONCLUSIONS/SIGNIFICANCE Taken together, these studies implicate endothelial Cx43 in hypoxia-associated repression of endothelial ATP release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RhoA GTPase Switch Controls Cx43-Hemichannel Activity through the Contractile System

ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated...

متن کامل

ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function.

Extracellular ATP liberated during hypoxia and inflammation can either signal directly on purinergic receptors or can activate adenosine receptors following phosphohydrolysis to adenosine. Given the association of polymorphonuclear leukocytes (PMNs) with adenine-nucleotide/nucleoside signaling in the inflammatory milieu, we hypothesized that PMNs are a source of extracellular ATP. Initial studi...

متن کامل

Connexin 43 hemichannels are permeable to ATP.

Astrocytes are electrically nonexcitable cells that communicate by means of Ca(2+) signaling. Long-distance intercellular Ca(2+) waves are initiated by release of ATP and activation of purinergic receptors on nearby cells. Previous studies have implicated connexin 43 (Cx43) in ATP release, but definitive proof that ATP exits through Cx43 hemichannels does not exist. Here, through several altern...

متن کامل

Development of a small molecule P 2 X 7 R antagonist

Spinal cord injury (SCI) is often complicated by secondary ischemic injury as a result of the innate inflammatory response to traumatic injury and tissue swelling. Prior studies have shown that excessive ATP release from peri-traumatic regions contributes to the inflammatory response to SCI by activation of low affinity P2X7 receptors. Since connexin hemichannels constitute an important route f...

متن کامل

Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond

Intercellular communication in primary bovine corneal endothelial cells (BCECs) is mainly driven by the release of extracellular ATP through Cx43 hemichannels. Studying the characteristics of Ca(2+)-wave propagation in BCECs, an important form of intercellular communication, in response to physiological signaling events has led to the discovery of important insights in the functional properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008